A MCP server implementation for LongPort OpenAPI, provides real-time stock market data, provides AI access analysis and trading capabilities through MCP.
Model Context Protocol server to run Python code in a sandbox.
The code is executed using Pyodide in Deno and is therefore isolated from the rest of the operating system.
See https://ai.pydantic.dev/mcp/run-python/ for complete documentation.
The server can be run with deno
installed using:
deno run \
-N -R=node_modules -W=node_modules --node-modules-dir=auto \
jsr:@pydantic/mcp-run-python [stdio|sse|warmup]
where:
-N -R=node_modules -W=node_modules
(alias of
--allow-net --allow-read=node_modules --allow-write=node_modules
) allows
network access and read+write access to ./node_modules
. These are required
so pyodide can download and cache the Python standard library and packages--node-modules-dir=auto
tells deno to use a local node_modules
directorystdio
runs the server with the
Stdio MCP transport
— suitable for running the process as a subprocess locallysse
runs the server with the
SSE MCP transport
— running the server as an HTTP server to connect locally or remotelywarmup
will run a minimal Python script to download and cache the Python
standard library. This is also useful to check the server is running
correctly.Here's an example of using @pydantic/mcp-run-python
with PydanticAI:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio
import logfire
logfire.configure()
logfire.instrument_mcp()
logfire.instrument_pydantic_ai()
server = MCPServerStdio('deno',
args=[
'run',
'-N',
'-R=node_modules',
'-W=node_modules',
'--node-modules-dir=auto',
'jsr:@pydantic/mcp-run-python',
'stdio',
])
agent = Agent('claude-3-5-haiku-latest', mcp_servers=[server])
async def main():
async with agent.run_mcp_servers():
result = await agent.run('How many days between 2000-01-01 and 2025-03-18?')
print(result.data)
#> There are 9,208 days between January 1, 2000, and March 18, 2025.w
if __name__ == '__main__':
import asyncio
asyncio.run(main())