A Model Context Protocol (MCP) server that enables AI assistants to query and analyze Azure Data Explorer databases through standardized interfaces.
A Model Context Protocol (MCP) server for Azure Data Explorer.
This provides access to your Azure Data Explorer clusters and databases through standardized MCP interfaces, allowing AI assistants to execute KQL queries and explore your data.
Execute KQL queries against Azure Data Explorer
Discover and explore database resources
Authentication support
Docker containerization support
Provide interactive tools for AI assistants
The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.
Create a service account in Azure Data Explorer with appropriate permissions, or ensure you have access through your Azure account.
Configure the environment variables for your ADX cluster, either through a .env
file or system environment variables:
# Required: Azure Data Explorer configuration
ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net
ADX_DATABASE=your_database
# Required: Azure authentication credentials
AZURE_TENANT_ID=your_tenant_id
AZURE_CLIENT_ID=your_client_id
AZURE_CLIENT_SECRET=your_client_secret
{
"mcpServers": {
"adx": {
"command": "uv",
"args": [
"--directory",
"<full path to adx-mcp-server directory>",
"run",
"src/adx_mcp_server/main.py"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database",
"AZURE_TENANT_ID": "your_tenant_id",
"AZURE_CLIENT_ID": "your_client_id",
"AZURE_CLIENT_SECRET": "your_client_secret"
}
}
}
}
Note: if you see
Error: spawn uv ENOENT
in Claude Desktop, you may need to specify the full path touv
or set the environment variableNO_UV=1
in the configuration.
This project includes Docker support for easy deployment and isolation.
Build the Docker image using:
docker build -t adx-mcp-server .
You can run the server using Docker in several ways:
docker run -it --rm \
-e ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net \
-e ADX_DATABASE=your_database \
-e AZURE_TENANT_ID=your_tenant_id \
-e AZURE_CLIENT_ID=your_client_id \
-e AZURE_CLIENT_SECRET=your_client_secret \
adx-mcp-server
Create a .env
file with your Azure Data Explorer credentials and then run:
docker-compose up
To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:
{
"mcpServers": {
"adx": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "ADX_CLUSTER_URL",
"-e", "ADX_DATABASE",
"-e", "AZURE_TENANT_ID",
"-e", "AZURE_CLIENT_ID",
"-e", "AZURE_CLIENT_SECRET",
"adx-mcp-server"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database",
"AZURE_TENANT_ID": "your_tenant_id",
"AZURE_CLIENT_ID": "your_client_id",
"AZURE_CLIENT_SECRET": "your_client_secret"
}
}
}
}
This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e
flag with just the variable name, and providing the actual values in the env
object.
Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.
This project uses uv
to manage dependencies. Install uv
following the instructions for your platform:
curl -LsSf https://astral.sh/uv/install.sh | sh
You can then create a virtual environment and install the dependencies with:
uv venv
source .venv/bin/activate # On Unix/macOS
.venv\Scripts\activate # On Windows
uv pip install -e .
The project has been organized with a src
directory structure:
adx-mcp-server/
├── src/
│ └── adx_mcp_server/
│ ├── __init__.py # Package initialization
│ ├── server.py # MCP server implementation
│ ├── main.py # Main application logic
├── Dockerfile # Docker configuration
├── docker-compose.yml # Docker Compose configuration
├── .dockerignore # Docker ignore file
├── pyproject.toml # Project configuration
└── README.md # This file
The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.
Run the tests with pytest:
# Install development dependencies
uv pip install -e ".[dev]"
# Run the tests
pytest
# Run with coverage report
pytest --cov=src --cov-report=term-missing
Tests are organized into:
When adding new features, please also add corresponding tests.
Tool | Category | Description |
---|---|---|
execute_query | Query | Execute a KQL query against Azure Data Explorer |
list_tables | Discovery | List all tables in the configured database |
get_table_schema | Discovery | Get the schema for a specific table |
sample_table_data | Discovery | Get sample data from a table with optional sample size |
MIT