A Model Context Protocol server for DuckDuckGo Search. This is a TypeScript-based MCP server that provides DuckDuckGo search functionality.
A Model Context Protocol (MCP) Server for Lara Translate API, enabling powerful translation capabilities with support for language detection and context-aware translations.
Model Context Protocol (MCP) is a standardized communication protocol that allows AI applications to connect with external tools and services. MCP servers act as bridges between AI models and specific functionalities, enabling AI applications to perform specialized tasks beyond their built-in capabilities.
The Lara Translate MCP Server enables AI applications to access Lara Translate API. When integrated with an MCP-compatible AI application:
This integration allows AI applications to seamlessly incorporate high-quality translations into their workflows without needing to directly implement the translation API.
translate
text
(array): An array of text blocks to translate, each with:
text
(string): The text contenttranslatable
(boolean): Whether this block should be translatedsource
(optional string): Source language code (e.g., 'en-EN' for English)target
(string): Target language code (e.g., 'it-IT' for Italian)context
(optional string): Additional context to improve translation qualityinstructions
(optional string[]): Instructions to adjust translation behaviorsource_hint
(optional string): Guidance for language detectionBefore installing, you need to:
LARA_ACCESS_KEY_ID
and LARA_ACCESS_KEY_SECRET
securelyNote: If you lose your credentials, they cannot be recovered, and you'll need to generate new ones.
There are three ways to install and run the Lara Translate MCP Server:
This option requires Docker to be installed on your system.
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"translatednet/lara-mcp:latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
<YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.This option requires Node.js to be installed on your system.
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": ["-y", "@translated/lara-mcp"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
<YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
# Install dependencies
pnpm install
# Build
pnpm run build
{
"mcpServers": {
"lara-translate": {
"command": "node",
"args": ["<FULL_PATH_TO_PROJECT_FOLDER>/dist/index.js"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
<FULL_PATH_TO_PROJECT_FOLDER>
with the absolute path to your project folder<YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
docker build -t lara-mcp .
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
<YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your actual credentials.The MCP configuration file location depends on the AI application you're using. Common locations include:
Claude Desktop:
%APPDATA%\Claude Desktop\claude_desktop_config.json
~/Library/Application Support/Claude Desktop/claude_desktop_config.json
~/.config/Claude Desktop/claude_desktop_config.json
Other Applications: Refer to the specific application's documentation for configuration file location
If the configuration file doesn't exist, you'll need to create it.
After setting up the MCP server and restarting your AI application:
Translate with Lara "Hello world" to Spanish
Prompt:
Translate with Lara "la terra è rossa", I'm talking with a tennis player.
API Input:
{
"text": [
{ "text": "la terra è rossa", "translatable": true }
],
"target": "en-US",
"context": "Conversation with a tennis player"
}
API Output:
[
{
"text": "The clay is red.",
"translatable": true
}
]
Prompt:
Translate with Lara "Buongiorno, come stai?" to English, use a formal tone.
API Input:
{
"text": [
{ "text": "Buongiorno, come stai?", "translatable": true }
],
"target": "en-US",
"instructions": ["Use a formal tone"]
}
API Output:
[
{
"text": "Good morning, how are you?",
"translatable": true
}
]
For issues with Lara Translate API, contact Lara Support.
For issues with this MCP Server, open an issue on the GitHub repository.